Em coordenadas esféricas - cursos (2024)

| MA211 - Cálculo II | Integrais triplas | Em coordenadas esféricas

Selecione os exercícios por

Dificuldade

Categoria

Outros

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.

2944

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{E}xyz\,dV$, onde $E$ está entre as esferas $\rho=2$ e $\rho=4$ e acima do cone $\phi=\pi/3.$

$0.$

2955

Usando coordenadas esféricas, determine o volume da porção da esfera sólida $\rho \leq a$ que está entre os cones $\phi=\pi/3$ e $\phi=2\pi/3.$

$\dfrac{2\pi a^{3}}{3}.$

2915

Um sólido está acima do cone $z=\sqrt{x^{2}+y^{2}}$ e abaixo da esfera $x^{2}+y^{2}+z^{2}=z.$ Escreva uma descrição do sólido em termos de desigualdades envolvendo coordenadas esféricas.


A mudança de coordenadas retangulares para coordenadas cartesianas é dada por

$$\begin{cases}x = \rho \cos{\theta} \sin{\phi} \\y = \rho \sin{\theta} \sin{\phi}\\z = \rho \cos{\phi},\end{cases}$$

em que $\rho \geq 0$, $\theta \in [0,2\pi]$ e $\phi \in [0,\pi]$. Observe que $\sin{\phi} \geq 0$ quando $\phi \in [0,\pi]$. Logo, a equação do cone em coordenadas esféricas pode ser escrita como $\rho \cos{\phi} = \sqrt{\rho^2 \sin^2{\phi}} = \rho\sin{\phi}$. A origem $(0,0,0)$ pertence ao cone e é dada por $\rho = 0$. Nos demais pontos, $\rho \neq 0$, donde $\phi = \pi/4$.

A equação da esfera em coordenadas esféricas pode ser escrita como $\rho^2=\rho\cos{\phi}$. A origem $(0,0,0)$ pertence à esfera e é dada por $\rho=0$. Nos demais pontos, $\rho \neq 0$, donde $\rho = \cos{\phi}$.

Portanto, o sólido pode ser descrito em coordenadas esféricas por

$$E = \left\{(\rho, \theta, \phi): 0 \leq \rho \leq \cos{\phi}, 0 \leq \theta \leq 2\pi \mbox{ e } 0 \leq \phi \leq \frac{\pi}{4}\right\}.$$

Em coordenadas esféricas - cursos (1)

2956

Usando coordenadas esféricas, determine o volume da menor região cortada da esfera sólida $\rho \leq 2$ pelo plano $z=1.$

$\dfrac{5\pi}{3}.$

2952

Seja $E$ o sólido limitado pelos dois planos $z=1$ e $z=2$ e lateralmente pelo cone $z=\sqrt{x^{2}+y^{2}}$. Expresse o volume de $E$ como integral tripla em coordenadas esféricas (não é necessário calcular a integral).

$\displaystyle \int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{\sec(\phi)}^{2\sec(\phi)} \rho^{2}\sin(\phi)\;d\rho d\phi d\theta.$

2927

Escreva a equação $z^{2}=x^{2}+y^{2}$ em coordenadas esféricas.

$\cos^2 \phi = \sin^2 \phi.$

2958

Usando coordenadas esféricas, determine o volume do sólido que está acima do plano $z=2\sqrt{3}$ e abaixo da esfera $x^{2}+y^{2}+z^{2}=16.$

$\dfrac{88\pi}{3}.$

2961

Usando coordenadas esféricas, determine o volume do sólido que está dentro da esfera $x^{2}+y^{2}+z^{2}=4$, acima do plano $xy$ e abaixo do cone $z=\sqrt{x^{2}+y^{2}}.$

$\dfrac{8\sqrt{2}\pi}{3}.$

2941

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B}(x^{2}+y^{2}+z^{2})^{2}\,dV$, onde $B$ é a bola com centro na origem e raio $5.$

$\dfrac{312500\pi}{7}.$

2925

Mude o ponto $(1,\sqrt{3},2\sqrt{3})$ dado em coordenadas retangulares para esféricas.

$\displaystyle \left( 4, \dfrac{\pi}{3}, \dfrac{\pi}{6} \right).$

2949

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B}\sqrt{x^{2}+y^{2}+z^{2}}\,dxdydz$, onde $B$ é a interseção da semi-esfera $x^{2}+y^{2}+z^{2}\leq 4$, $z\geq 0$, com o cilindro $x^{2}+y^{2}\leq 1.$

$\displaystyle \dfrac{\pi}{4}\left( 32- 14\sqrt{3} + \ln(2 + \sqrt{3})\right).$

2928

Esboce o sólido descrito por $\rho \leq 2$, $0\leq \phi \leq \pi/2$ e $0\leq \theta \leq \pi/2.$

2966

Dentre as coordenadas cilíndricas ou esféricas, utilize a que lhe parecer mais apropriada para determinaretermine o volume da região limitada abaixo pelo plano $z=0$, lateralmente pelo cilindro $x^{2}+y^{2}=1$ e acima pelo paraboloide $z=x^{2}+y^{2}$.

$\dfrac{\pi}{2}.$

2965

Dentre as coordenadas cilíndricas ou esféricas, utilize a que lhe parecer mais apropriada para determinaretermine o volume da menor cunha esférica cortada de uma esfera de raio $a$ por dois planos que se interceptam ao longo de um diâmetro com um ângulo de $\pi/6.$

$\dfrac{\pi a^3}{9}.$

2947

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B}\sqrt{x+y}\sqrt[3]{x+2y-z}\,dxdydz$, onde $B$ é a região $1\leq x+y\leq 2$, $0\leq x+2y-z\leq 1$ e $0\leq z\leq 1.$

$\sqrt{2} - \dfrac{1}{2}.$

2946

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B}x\,dxdydz$, onde $B$ é o conjunto $\dfrac{x^{2}}{4}+\dfrac{y^{2}}{9}+z^{2}\leq 1$ e $x\geq 0.$

$3\pi.$

2931

Calcule a integral em coordenadas esféricas. $\displaystyle\int_{0}^{2\pi}\int_{0}^{\pi/4}\int_{0}^{2}(\rho\cos{\phi})\rho^{2}\sin{\phi}\,d\rho d\phi d\theta$.

$2\pi.$

2930

Calcule a integral em coordenadas esféricas. $\displaystyle\int_{0}^{\pi}\int_{0}^{\pi}\int_{0}^{2\,\sin{\phi}}\rho^{2}\sin{\phi}\,d\rho d\phi d\theta$.

$\pi^2.$

2916

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B} z \,dxdydz$, onde $B$ é o conjunto $1\leq x^{2}+y^{2}+z^{2}\leq 4$ e $z\geq 0.$


Usando coordenadas esféricas, o sólido pode ser descrito por

$$B = \left\{(\rho, \theta, \phi): 1 \leq \rho \leq 2, 0 \leq \theta \leq 2\pi \mbox{ e } 0 \leq \phi \leq \frac{\pi}{2}\right\}.$$

Lembre que o Jacobiano dessa transformação é $\rho^2 \sin{\phi}$. Assim, obtemos

\begin{array}{rcl}\displaystyle\iiint\limits_{B} z \,dxdydz & = & \displaystyle\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}\int_{1}^{2}(\rho \cos{\phi})(\rho^2 \sin{\phi})\,d\rho d\phi d\theta \\ & = & \displaystyle\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}\left.\left(\frac{\rho^4}{4} \frac{\sin{2\phi}}{2}\right|_{\rho=1}^{\rho=2}\right)\, d\phi d\theta \\ & = & \displaystyle\int_{0}^{2\pi}\left.\left(\frac{(16-1)}{8} \frac{(-\cos{2\phi)}}{2}\right|_{\phi=0}^{\rho=\frac{\pi}{2}}\right)\, d\theta \\ & = & \left.-\frac{15}{16}(-1-1) \theta \right|_{\theta=0}^{\theta=2\pi} = \frac{15\pi}{4}. \end{array}

3120

Usando coordenadas esféricas, calcule a massa da esfera sólida de raio \(a\) com densidade proporcional à distância ao centro (tomando \(k\) como a constante de proporcionalidade).

\(k\pi a^4\)

2953

Usando coordenadas esféricas, determine o volume da parte da bola $\rho\leq a$ que está entre os cones $\phi=\pi/6$ e $\phi=\pi/3.$

$\displaystyle \left( \sqrt{3} - 1 \right) \dfrac{\pi a^3}{3}.$

2964

Dentre as coordenadas cilíndricas ou esféricas, utilize a que lhe parecer mais apropriada para determinar o volume e o centroide do sólido $E$ que está acima do cone $z=\sqrt{x^{2}+y^{2}}$ e abaixo da esfera $x^{2}+y^{2}+z^{2}=1.$

Volume: $\dfrac{\pi(2 - \sqrt{2})}{3};$ centróide: $\left(0,0, \dfrac{3}{8(2 - \sqrt{2})} \right).$

3118

Use coordenadas esféricas para encontrar o volume do sólido: limitado acima pela esfera \(\rho=4\) e abaixo pelo cone \(\phi=\pi/3\).

\(\dfrac{64\pi}{3}\)

2945

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B}x\,dxdydz$, onde $B$ é o conjunto $x\geq 0$ e $x^{2}+y^{2}+z^{2}\leq 4.$

$4\pi$.

2950

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{E}xyz\,dV$, onde $E$ é o sólido limitado pelos paraboloides $z=x^{2}+y^{2}$ e $z=8-x^{2}-y^{2}.$

$0.$

2933

Calcule a integral em coordenadas esféricas. $\displaystyle\int_{0}^{3\pi/2}\int_{0}^{\pi}\int_{0}^{1}5\rho^{3}\sin^{3}{\phi}\,d\rho d\phi d\theta$.

$\dfrac{5\pi}{2}.$

3152

Mostre que o determinante Jacobiano da mudança de coordenadas cartesianas para esféricas é $-\rho^2 \sin \varphi$.

2967

Dentre as coordenadas cilíndricas ou esféricas, utilize a que lhe parecer mais apropriada para determinaretermine o volume da região limitada acima pelo paraboloide $z=5-x^{2}-y^{2}$ e abaixo pelo paraboloide $z=4x^{2}+4y^{2}.$

$\dfrac{5\pi}{2}.$

2943

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{E}z\,dV$, onde $E$ está entre as esferas $x^{2}+y^{2}+z^{2}=1$ e $x^{2}+y^{2}+z^{2}=4$, no primeiro octante.

$\dfrac{15\pi}{16}.$

2957

Usando coordenadas esféricas, determine o volume da região cortada do cilindro sólido $x^{2}+y^{2}\leq 1$ pela esfera $x^{2}+y^{2}+z^{2}=4.$

$\dfrac{4\pi(8 - 3\sqrt{3})}{3}.$

2951

Seja $D$ a região limitada abaixo pelo plano $z=0$, acima pela esfera $x^{2}+y^{2}+z^{2}=4$ e dos lados pelo cilindro $x^{2}+y^{2}=1$. Monte as integrais triplas em coordenadas esféricas que dão o volume de $D$ usando as ordens de integração a seguir.

  1. $d\rho\,d\phi\,d\theta$;

  2. $d\phi\,d\rho\,d\theta$.

  1. $\displaystyle \int_{0}^{2\pi}\int_{0}^{\pi/6}\int_{0}^{2} \rho^{2}\sin(\phi)\; d\rho d\phi d\theta + \int_{0}^{2\pi}\int_{\pi/6}^{\pi/2}\int_{0}^{\csc(\phi)} \rho^{2}\sin(\phi)\; d\rho d\phi d\theta.$

  2. $\displaystyle \int_{0}^{2\pi}\int_{1}^{2}\int_{\pi/6}^{\arcsin(1/\rho)} \rho^{2}\sin(\phi)\; d\phi d\rho d\theta + \int_{0}^{2\pi}\int_{0}^{2}\int_{0}^{\pi/6} \rho^{2}\sin(\phi)\; d\phi d\rho d\theta.$

2970

Calcule a integral, transformando para coordenadas esféricas. $\displaystyle\int_{-a}^{a}\int_{-\sqrt{a^{2}-y^{2}}}^{\sqrt{a^{2}-y^{2}}}\int_{-\sqrt{a^{2}-x^{2}-y^{2}}}^{\sqrt{a-x^{2}-y^{2}}}(x^{2}z+y^{2}z+z^{3})\,dzdxdy$.

$0.$

3119

Use coordenadas esféricas para encontrar o volume do sólido: contido no interior do cone \(\phi=\pi/4\), entre as esferas \(\rho=1\) e \(\rho=2\).

3121

Usando coordenadas esféricas, calcule a massa do sólido compreendido entre as esferas \(x^2+y^2+z^2=1\) e \(x^2+y^2+z^2=4\), com densidade \(\delta(x,y,z)=(x^2+y^2+z^2)^{-1/2}.\)

2926

Identifique a superfície cuja equação é $\rho=\sin{\theta}\sin{\phi}.$

Esfera de raio $\dfrac{1}{2}$ centrada no ponto $\left(0,\dfrac{1}{2},0\right).$

2968

Calcule a integral, transformando para coordenadas esféricas. $\displaystyle\int_{0}^{1}\int_{0}^{\sqrt{1-x^{2}}}\int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{2-x^{2}-y^{2}}}xy\,dzdydx$.

$\dfrac{(4\sqrt{2} - 5)}{15}.$

2960

Usando coordenadas esféricas, determine o volume e o centroide do sólido que está acima do cone $\phi=\pi/3$ e abaixo da esfera $\rho=4\cos{\phi}.$

Volume: $10\pi;$ centróide: $(0,0,2,1).$

2963

O centróide de uma região $E$ é dado por

$$\overline{x}=\frac{1}{vol(E)}\int_{E}x\,dV,\;\;\;\; \overline{y}=\frac{1}{vol(E)}\int_{E}y\,dV\;\; \text{e}\;\; \overline{z}=\frac{1}{vol(E)}\int_{E}z\,dV.$$

Calcule o centróide da região dada em coordenadas esféricas por $0\leq \rho \leq 1$, $0\leq\phi \leq \pi/3$ e $0\leq \theta \leq 2\pi$ (observe que, devido à simetria da região, $\overline{x}$ e $\overline{y}$ se anulam, bastando calcular a terceira coordenada).

$\overline{z} = \dfrac{9}{16}.$

2948

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B}z\,dxdydz$, onde $B$ é o conjunto $z\geq \sqrt{x^{2}+y^{2}}$ e $x^{2}+y^{2}+z^{2}\leq 1.$

$\dfrac{\pi}{8}.$

2959

Usando coordenadas esféricas, determine o volume do sólido que está acima do cone $\phi=\pi/3$ e abaixo da esfera $\rho=4\cos{\phi}.$

$10\pi.$

2954

Usando coordenadas esféricas, determine o volume do elipsoide $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}+\dfrac{z^{2}}{c^{2}}\leq 1.$

$\dfrac{4 \pi abc}{3}.$

2969

Calcule a integral, transformando para coordenadas esféricas. $\displaystyle\int_{0}^{2}\int_{0}^{\sqrt{4-y^{2}}}\int_{0}^{\sqrt{4-x^{2}-y^{2}}}\dfrac{1}{x^{2}+y^{2}+z^{2}}\,dzdxdy$.

$\pi.$

2971

Mostre que

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\sqrt{x^{2}+y^{2}+z^{2}}\,e^{-(x^{2}+y^{2}+z^{2})}\,dxdydz=2\pi.$$

(A integral imprópria tripla é definida como o limite da integral tripla sobre uma esfera sólida quando o raio da esfera aumenta indefinidamente.)

Note que $$\begin{split}&\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\sqrt{x^{2}+y^{2}+z^{2}}\,e^{-(x^{2}+y^{2}+z^{2})}\,dxdydz \\&= \lim_{R \to \infty} \int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{R} \rho e^{-\rho^2}\rho^2 \sin(\phi)\;d\rho d\phi d\theta.\end{split}$$

2932

Calcule a integral em coordenadas esféricas. $\displaystyle\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{(1-\cos{\phi})/2}\rho^{2}\sin{\phi}\,d\rho d\phi d\theta$.

$\dfrac{\pi}{3}.$

2929

Esboce o sólido cujo volume é dado pela integral abaixo e calcule-a.

$$\int_{0}^{\pi/6}\!\!\int_{0}^{\pi/2}\!\!\int_{0}^{3}\rho^{2}\sin{\phi}\;d\rho d\theta d\phi$$

Em coordenadas esféricas - cursos (2)

2942

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{H}(9-x^{2}-y^{2})\,dV$, onde $H$ é o hemisfério sólido $x^{2}+y^{2}+z^{2}\leq 9$ e $z\geq 0.$

$\dfrac{486\pi}{5}.$

2924

Marque o ponto cujas coordenadas esféricas é $(1,0,0)$ e encontre as coordenadas retangulares do ponto.

$(0,0,1).$

Em coordenadas esféricas - cursos (3)

3117

Seja \(G\) a região sólida dentro da esfera de raio \(2\) centrada na origem e acima do plano \(z=1\). Mostre (ou verifique) os seguintes resultados:

  1. O volume de \(G\) é dado por \[\iiint\limits_G\,dV = \int_0^{2\pi}\int_0^{\dfrac{\pi}{3}}\int_{\sec\phi}^{2}\rho^2\sin\phi\,d\rho d\phi d\theta \]

  2. \[\iiint\limits_G\dfrac{z}{x^2+y^2+z^2}\,dV = \int_0^{2\pi}\int_0^{\pi/3}\int_{\sec\phi}^{2}\rho\cos\phi\sin\phi\,d\rho d\phi d\theta \]

Em coordenadas esféricas
            
            
                
                    - cursos (2024)
Top Articles
Latest Posts
Article information

Author: Wyatt Volkman LLD

Last Updated:

Views: 5985

Rating: 4.6 / 5 (46 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Wyatt Volkman LLD

Birthday: 1992-02-16

Address: Suite 851 78549 Lubowitz Well, Wardside, TX 98080-8615

Phone: +67618977178100

Job: Manufacturing Director

Hobby: Running, Mountaineering, Inline skating, Writing, Baton twirling, Computer programming, Stone skipping

Introduction: My name is Wyatt Volkman LLD, I am a handsome, rich, comfortable, lively, zealous, graceful, gifted person who loves writing and wants to share my knowledge and understanding with you.